domingo, 29 de mayo de 2016

Para crear la Realidad  Aumentada (RA),existen diferentes tipos de software, clasificados en dos grandes grupos: basados en reconocimiento y basados en localización.

Basados en reconocimiento


Este reconocimiento puede ser, a través de:

1. Códigos QR


Generadores de QR 
Son aquellos programas que generan el código QR, generalmente de un enlace o link en la Web.
  • Unitag QR
          https://www.unitag.io/es/qrcode
  • qrcode.es 
  • Códigos-qr.com
             http://www.codigos-qr.com/generador-de-codigos-qr/
  • QR-code Monkey
             http://www.qrcode-monkey.com/es/


Lectores de QR 
Son aquellos programas que leen el código QR generado anteriormente, abriendo una ventana para el enlace codificado.

  • QR Droid 
  • Beetag Reader 
  • UpCode Reader 
  • I.nigma Reader 
  • QuickMark Reader 
  • QRafter 
  • RedLaser 
  • Tingiz
  • Scan 
  • 1QR

2. Marcadores

Un marcador o patrón es una imagen que la computadora procesa, y de acuerdo a la programación definida para esa imagen, le incorpora objetos 3D, videos, gráficos, entre otros.

  • ARcrowd 
  • LearnAR 
  • Aumentaty 
  • AR-media plugin para Google 
  • Sketchup 
  • ARToolkit

3. Imágenes

Las imágenes funcionan igual que los marcadores, pero a diferencia de estos, la programación se encuentra en la imagen, la cual debe tener una alta resolución.
  • Layar 
  • ColAR Mix 
  • Aurasma 
  • Junaio GLUE 
           http://es.slideshare.net/tecnotic/junaio-glue-realidad-aumentada-nft-a-lo-fcil
  • ChromVille 
  • Daqri
          http://www.daqri.com
  • Glogster 
  • ChatterPix Kids 
  • iMotion HD

Basados en localización


  • EspiRA (Educared) 
  • AumentaME 
  • Mixare







En Realidad Virtual existen tres tipos de modelos computacionales que permiten configurar la realidad virtual exitosamente:

1. Modelo geométrico 

Se encarga del nivel gráfico:
 
 Visualización de un EV3D 
  • Tipos de formatos gráficos 
  • Órdenes de dibujado
Basado en un conjunto de primitivas poligonales, líneas, superficies, texto, etc.

Hardware dedicado 
  •       Dibujar millones de polígonos por seg.
Tecnología utilizada: 
Lenguaje de modelado VRML (Virtual Reality Modeling Language) 
  • APIs (Application Programmer’s Interface) 
  • Open GL-Performer 
  • Open Inventor Java 3D
Actores 3D de aspecto humanoide 
Personajes o cuerpos articulados: Se diseñan, se modelan, y se integran en el EV3D. 
Permiten deformaciones geométricas asociadas a articulaciones. Gran coste computacional.

2. Modelo de comportamiento

Se encarga del comportamiento dinámico (cambios) de todos los objetos y actores 3D del EV3D: orientación, color, posición, etc. 

EV3D clásicos 
  • El modelo de comportamiento es muy dependiente del modelo geométrico. 
  • Problema: Los comportamientos de los objetos son independientes del estado de su entorno.

3. Modelo de interacción con el usuario

  • El sistema registra posición, orientación y rutas de navegación del usuario, y la imagen es calculada desde su punto de vista. 
  • Sólo puede interactuar con objetos que se encuentren dentro de su campo de visión. 
  • A veces, los nodos del grafo de escena del usuario tienen poca representatividad, omitiendo información (posición de los ojos, del torso, de las manos, etc.) 
               - En VRML, el avatar del usuario tiene altura, anchura y longitud máxima de sus pasos.
               - En SVE, tiene manos, ojos, cabeza, etc.


Referencia:

Espinosa, Koldo (2016). Aplicaciones y servicios para educación 3D:
mundos virtuales y juegos pedagógicos. Máster de Investigación en Tecnología, Aprendizaje y Educación UPV / EHU. Madrid.






En este mundo, todo evoluciona constantemente, y el área de la educación no se queda atrás. Así como las personas evolucionamos, presentamos cambios y transformaciones, en esa misma medida lo hace la educación.

Entre los motivos que provocan la evolución necesaria de la educación, se encuentran:
  • Fracaso escolar
  • El apoyo de las TICs
  • El reto del proceso de Bolonia
  • Aprendizaje basado en competencias: necesario nuevas metodologías
  • El nuevo perfil de los jóvenes (interfaces de EV3D, avatares, aplicaciones de comunicación social)
  • Daniel Goleman (su teoría de inteligencia emocional): juegos pedagógicos, con procedimientos emocionales.

miércoles, 6 de abril de 2016


Lee el Código QR y podrás accesar mi blog


QR Code - qr1

domingo, 6 de marzo de 2016

A continuación, presento el procedimiento a seguir para la solución de la tarea T3, asignada por el profesor Oskar Casquero, para evaluar nuestras competencias en análisis estadístico.


Planteamiento:
Unos investigadores desarrollan un nuevo entorno virtual de aprendizaje basado en Google Apps. Para evaluar la incidencia de la utilización de este nuevo entorno en las calificaciones de los estudiantes, durante dos años se realiza un estudio de caso con dos grupos de estudiantes: un grupo de control que utiliza Moodle y un grupo experimental que utiliza Google Apps; el reparto de sujetos entre ambos grupos se realiza siguiendo un criterio de paridad de sexo.


Objetivos:
  • Analizar si existen diferencias estadísticamente significativas en las calificaciones en función del grupo y del sexo. 
  • Calcular si existe una interacción estadísticamente significativa entre las variables grupo y sexo. 

Hipótesis de investigación:
La calificación promedio de los estudiantes que usan Moodle es diferente a la calificación promedio de los estudiantes que usan Google Apps,en función del sexo.


Procedimiento
Primeramente descargamos desde Dropbox el archivo que contiene los datos a ser analizados,   Notas-2grupos-v3.csv. (Figura 1)

Figura 1

Ya que tenemos el archivo descargado, procedemos a importarlo en una hoja de trabajo de Excel (Figura 2).
Figura 2

Elegimos el archivo a importar, y luego especificamos si estará delimitado por un caracter y si el archivo incluye los encabezados de cada columna. (Figura 3)

Figura 3

Especificamos el tipo de caracter que está sirviendo como delimitador. En este caso, se usa el punto y coma (;). (Figura 4)

Figura 4

Establecemos el tipo de datos que se almacena en cada columna. Debido a que son tipos de datos diferentes, elegimos general, que aplica a cualquier tipo de dato.

Figura 5

Seleccionamos ahora donde colocar los datos importados, puede ser en la hoja de trabajo activa o en una nueva hoja de trabajo.

Figura 6

La siguiente imagen (Figura 7) muestra como aparecen los datos, organizados en filas y columnas. Como se puede ver, la tabla tiene 4 columnas o variables (sujeto, grupo, nota y sexo).

Figura 7

Observo y Reflexiono

Por simple observación, podríamos decir que es evidente la existencia de una distribución de datos con notoria diferencia significativa, donde las calificaciones varían tanto por sexo, como por grupo. Observo además, que el grupo que usó Google Apps, obtuvo mayores calificaciones, predominando los hombres con mayor calificación que las mujeres. Pero como la estadística, no es solo observación, sino análisis, procederemos a elaborar un gráfico de interacción entre las variables grupo y sexo, como variables independientes y notas, como variable dependiente.

Para esto, calculamos los promedios con las siguientes fórmulas, combinando las variables grupo y sexo, es decir: Moodle-Male, Moodle-Female, GoogleApps-Male, GoogleApps-Female, como se visualiza más abajo (Figura 8).

Figura 8

Dibujo el gráfico de interacción

Dibujamos un gráfico de interacción con las medias de las calificaciones obtenidas, y este es el resultado (Figura 9).
Figura 9

Al observar el gráfico, nos percatamos que debido a que los dos factores de la investigación (grupo y sexo) interactúan, esto nos dice que el efecto del factor grupo, depende del nivel del factor sexo. 
En otras palabras, que existe una relación de dependencia entre las variables grupo, sexo y nota y por eso ocurre tal interacción. Por tanto, los resultados que refleja el gráfico en cierta forma coincidieron con lo observado anteriormente, donde se denotó que las calificaciones de un grupo y un sexo determinado presentaban un mayor valor. Esto se muestra en el gráfico, donde con las medias obtenidas se visualiza que los hombres que usaron Moodle obtuvieron las notas más bajas de los cuatro grupos, mientras que los hombres que usaron Google Apps obtuvieron las más altas de los cuatro grupos. 

Por otro lado, las mujeres que usaron Moodle, a pesar de que no obtuvieron las notas más bajas de los cuatro grupos, obtuvieron una calificación menor que la obtenida por las mujeres que usaron Google Apps. Es decir, que usando Moodle, las mujeres obtienen mejores calificaciones, mientras que usando Google Apps, los hombres son los que obtienen las mayores calificaciones.

Figura 10

¿Qué les parece si verificamos si existen diferencias estadísticamente significativas en las calificaciones, en función del grupo y el sexo?

Iniciamos importando el conjunto de datos en la herramienta Rstudio, para habilitar las variables para su cálculo (Figura 11).

Figura 11

Realizamos las siguientes fórmulas con el objetivo de crear 4 subconjuntos en función del grupo y el sexo: grupomoodlem, grupomoodlef, grupogooglem y grupogooglef (Figura 12).

Figura 12

Usando el comando tapply, vamos a calcular las medias por grupo y sexo.

Figura 13


Ahora, calculamos la t de Student, para los subconjuntos que usaron Moodle y para los dos subconjuntos que usaron Google Apps (Figura 14). Es decir, verificaremos si los hombres que usaron Google Apps, efectivamente tienen mayores calificaciones, que las mujeres que también usaron Google Apps.  Del mismo modo, verificaremos si las mujeres que usaron Moodle, efectivamente tienen mayores calificaciones, que los hombres que también usaron Moodle. 

Figura 14

No se ustedes, pero yo estoy sorprendida, ya que, aunque los valores de las medias para los cuatro grupos es diferente, el p-value presenta el mismo valor (0.5 %). Por tanto, en ambos casos existen diferencias estadísticamente significativas en las calificaciones en función del grupo y el sexo         (p-value <  5%). Esto es midiendo la sgnificancia estadística en el mismo grupo, pero diferente sexo. 

Sin embargo, más interesante aún es observar que el p-value es igual en ambos casos, y creo que se debe a la interacción que existe entre las variables grupo, sexo y nota. Lo verificaré más adelante con la función AOV().

Vamos ahora hacer lo contrario, vamos a medir si existen diferencias estadísticamente significativas tomando en cuenta el mismo sexo, pero diferentes entornos. Es decir, comprobaremos si podemos afirmar que las mujeres que usaron Google Apps obtuvieron mejores calificaciones que aquellas que usaron Moodle, y lo mismo para los hombres (Figura 15).

Figura 15


Aquí observamos, contrario al caso anterior, que no podemos afirmar que las mujeres que usan Google Apps obtienen mejores notas que las que usan Moodle, debido a que p-value es igual a 10% (p-value > 5%). Sin embargo, el caso de los hombres es diferente, ya que ciertamente podemos afirmar que los hombres que usan Google Apps obtienen mejores calificaciones que aquellos que usan Moodle, con un p-value igual a 0.00002% (p-value < 5%), y casi igual a cero.


Ahora uso AOV() para verificar si además existe una interacción estadísticamente significativa entre las variables grupo y sexo (Figura 16).

Figura 16

Con los resultados de la fórmula AOV(), se puede concluir que existen evidencias suficientemente fuertes como para apoyar la afirmación de que existe una interacción estadísticamente significativa entre las variables grupo y sexo (p-value <  5%).

Al parecer puede haber un efecto principal del entorno de trabajo y del sexo como resultado de las calificaciones de los estudiantes. También parece que hay un efecto principal del entorno, los que usaron Google Apps obtuvieron mejores calificaciones. Sin embargo, el efecto de la variable del entorno depende del sexo (y viceversa): los de sexo masculino obtuvieron las mejores calificaciones, pero los de sexo femenino obtuvieron las calificaciones más bajas.






En el tercer día del Máster, 28 de enero 2016, el profesor Jesús Romo introdujo una herramienta super potente y la cual nos permite crear todo tipo de sitios en la Web para ser usados en el proceso de enseñanza aprendizaje. Les hablo, nada más y nada menos que de Google Sites.

Según Coutinho(2009),  los potenciales pedagógicos de Google Sites se diversifican y
se puede adaptar a muchos y diferentes contextos pedagógicos: i) para crear sitios web de clase; ii) crear WebQuest; iii) para el trabajo colaborativo, iv) para que los estudiantes lo utilicen como portafolio individual o grupal; v) organizar y compartir recursos para el aula y vi) para difundir el trabajo del aula a la comunidad educativa.

Y efectivamente, es así que, con Google Sites, puedo crear la página web de mi centro educativo, de una asignatura y hasta de un profesor. Además puedo usarlo para crear Wikis, Blogs y Webquest. Justamente en este último nos enfocaremos de ahora en adelante, mostrando una presentación detallada de los pasos a dar para la creación de una Webquest.

Pero antes que nada, que les parece si conceptualizamos un poco en lo referente al término Webquest, para así comprender mejor su funcionalidad.

De acuerdo con Dodge (2014), una Webquest es un conjunto de actividades, estructuradas y guiadas proporcionando a los alumnos una tarea bien definida, así como los recursos y las consignas que les permiten realizarlas, usando el Internet para recopilar información. Es así, que a través del uso de la Webquest se aplica la teoría constructivista, donde el estudiante construye su propio aprendizaje, guiado por el/la docente.

Esto me lleva a decir que  la webquest es actividad didáctica que incita a los estudiantes a investigar, potencia el pensamiento crítico, la creatividad y la toma de decisiones, ayudando así a que estos transformen los conocimientos adquiridos. Esta se compone de seis partes: introducción, tarea, proceso, recursos, evaluación y conclusiones. Para diseñar una buena webquest, se debe: localizar buenos sitios, organizar alumnos y recursos, retar a los alumnos a pensar, usar los medios y reforzar para el éxito.

Sus aplicaciones son varias en el entorno educativo, porque primeramente se plantea una tarea (Puede ser la resolución de un problema, el análisis de un tema o realizar una investigación o procedimiento), la cual debe seguir un proceso paso a paso, explicado detalladamente por el profesor, y proporcionando los recursos en Internet que le permitirán obtener la información requerida, para así completar la tarea asignada de forma exitosa. Asimismo se provee a los estudiantes de una rúbrica de evaluación, la cual les permitirá en todo momento, saber los indicadores de desempeño que deben cumplir para obtener una buena calificación. Esto permite integrar varias áreas y a la vez promueve el aprendizaje colaborativo.

¿Qué les parece si a continuación echamos un vistazo a este grupo de diapositivas, donde pretendo explicar el proceso a seguir para la creación de una Webquest, así como el ejemplo de mi primera Webquest (Comprendo mi Lectura).

Creando una webquest from gkltravieso



Referencias

Coutinho, C. P. (2009). Using blogs, podcasts and google sites as educational tools in a teacher education program.

Dodge, B. (2014). WebQuest. Recuperado de http://repositorio.planteso.edu.co:8080/jspui/handle/11399/59


Romero R., Román & Llorente, Ma. (2008). Tecnología en los Entornos de Infantil y Primaria (1era. Ed.) España, Editorial síntesis S.A.


 


En lo que sigue, presento el proceso efectuado para realizar esta tarea asignada por el maestro Oskar Casquero, con el fin de evaluar las competencias adquiridas en el uso de la herramienta estadística RStudio y nuestra capacidad de análisis estadístico.

Planteamiento
Unos investigadores desarrollan un nuevo entorno virtual de aprendizaje basado en Google Apps. Para evaluar la incidencia de la utilización de este nuevo entorno en las calificaciones de los estudiantes, durante dos años se realiza un estudio de caso con dos grupos de estudiantes: un grupo de control que utiliza Moodle y un grupo experimental que utiliza Google Apps.

Conceptos
Primeramente, resulta interesante, antes de iniciar el desarrollo de esta asignación, conocer qué es Google Apps y qué es Moodle. El primero, es el conjunto de aplicaciones de Google que permite, que tanto estudiantes, como maestros, puedan desarrollar su trabajo de una manera más eficiente, usando herramientas como Google Sites, Google Forms, Google Calendar, entre muchas otras aplicaciones. El segundo, Moodle, es una potente aplicación diseñada para la creación y administración de Plataformas Virtuales de Aprendizaje (PVA), usada por la mayoría de instituciones educativas para la implementación de cursos en línea.

Objetivo
Analizar, para cada uno de los años, si existen diferencias estadísticamente significativas entre las calificaciones de ambos grupo.

Hipótesis de investigación
Los estudiantes que usan Google Apps tienden a obtener mejores calificaciones que los estudiantes que usan Moodle.

Procedimiento

Primero: Descargamos ambos archivos desde Dropbox: Notas-2grupos-v1.csv (archivo que contiene los datos del primer año) y Notas-2grupos-v2.csv (archivo que contiene los datos del segundo año).

 Figura 1a.

 Figura 1b.

Segundo: Abrimos RStudio e importamos el primer archivo, haciendo clic en "Import Dataset", eligiendo la opción: "From Text File", desde donde aparece la siguiente ventana (Figura 2.). Aquí pueden notar que en el archivo del primer año, el separador de los campos es el punto y coma (;), lo que permitirá que los datos aparezcan ordenados correctamente, según la estructura de datos presentada en la Figura 3.

 
Figura 2.


Figura 3.

Al importar el segundo archivo (Notas-2grupos-v2.csv), nos damos cuenta que el separador que usa (#), no aparece en la lista de separadores de la opción "Import Dataset" (Figura 4). Por tanto, procedemos a generar la estructura de datos para este archivo de forma manual, con el siguiente comando (Ver Figura 5).

Figura 4



Figura 5

Ya que tenemos la estructura de datos de ambos archivos (Figura 6), podemos observar que se crearon dos conjuntos de datos con igual número de registros (40) y de variables (3).


Figura 6


Tercero: Ahora procedemos a filtrar los datos de cada año, tomando la variable grupo como referencia. Esto significa que crearemos dos subconjuntos de datos, en base a la variable grupo, para cada año. Dos para el año 1 (GrupoMoodle1 y GrupoApps1) y dos para el año dos (GrupoMoodle2 y GrupoApps2). Esto lo hacemos con los siguientes comandos en la consola de RStudio (Figura 7). 

Figura 7


Cuarto: Calculamos las calificaciones medias de ambos grupos para cada año usando el comando tapply (Figura 8). A simple vista se podría decir que el grupo que usó Google Apps obtuvo mejores calificaciones en cada año. Pero para afirmar esto con certeza, debemos investigar si este valor tiene significancia estadística.

Figura 8


Quinto: Usando la fórmula de la t de Student, verificamos si existe una diferencia estadísticamente significativa en las calificaciones de ambos grupos para cada año (Figura 9 y Figura 10).

Año 1
Figura 9


Año 2
Figura 10


Análisis
Según podemos observar, en el primer año (Figura 9), el resultado del p-value es 0.007427 (0.7%), que es menor que 5%. Por tanto, esto nos indica que efectivamente hubo cambios estadísticamente significativos y por tanto el resultado no se debe al azar. Lo que nos lleva a afirmar que efectivamente, el grupo que usó Google Apps en el primer año obtuvo mejores calificaciones que el grupo que usó Moodle según las calificaciones medias obtenidas.

Por otro lado, en el  segundo año (Figura 10), el resultado del p-value es 0.08832 (8%),  mayor que 5%. Por tanto, esto nos indica que en este caso no existe una diferencia significativa entre estas medias y por tanto el resultado puede ser debido al azar. Por lo que en este segundo año, no podemos afirmar con certeza que el grupo que usó Google Apps obtuvo mejores calificaciones, aunque las medias presentadas digan lo contrario. 



Conclusiones

Aunque los estudiantes que usaron Google Apps, obtuvieron las mismas calificaciones en ambos años, observamos que en el primer año, debido a que hubo diferencias estadísticamente significativas en la variable notas, usando la t de Student  (p-value <  5%),  comprobamos nuestra hipótesis de investigación planteada más arriba.  Sin embargo, en el segundo año no pudimos comprobar nuestra hipótesis de investigación (p-value > 5%), ya que los resultados pudieron ser producto del azar o debido a la incidencia de otras variables que deben ser observadas.

Ahora bien, comparando el comportamiento de los grupos Moodle y Google Apps a través de ambos años, con las medias obtenidas, se puede obtener el siguiente gráfico (Figura 11).

Figura 11


Los resultados obtenidos en la gráfica, indican que del año 1 al año dos no hubo cambios para las calificaciones del grupo que trabajó con el entorno de Google Apps, mientras que el grupo que trabajó con Moodle, presentó un ligero aumento del año 1 al año 2.

Ahora bien, a partir de aquí podríamos decir que aunque los estudiantes que usaron Google Apps, obtuvieron las mejores calificaciones en ambos años, no hubo un aumento de las mismas en el segundo año. Sin embargo, aunque los que usaron Moodle obtuvieron las calificaciones más bajas, en el segundo año mostraron una mejoría en su desempeño, obteniendo mejores calificaciones.

Sería interesante calcular si estos cambios que observamos en el gráfico para el grupo que usó Moodle son estadísticamente significativos o simplemente se deben al azar o a la influencia de otras variables. Por tanto, usemos nuevamente la t de Student para comprobar esto, tomando en cuenta la media obtenida por el grupo Moodle en ambos años (Figura 12) .

Figura 12



De acuerdo al resultado de la t de Student (p-value > 5%), se demuestra que los cambios en las calificaciones de  los estudiantes que usaron  Moodle fueron muy escasos, ya que no hubo diferencias significativas en las medias calculadas. Por tanto, la variable grupo no puede ser el único indicador de los resultados presentados, se debe seguir investigando.

Y sigue aumentando mi curiosidad: ¿Qué otras variables podrían incidir en estos resultados?





Twitter

Copyright (c) Geovanna K. Lorenzo. Con tecnología de Blogger.

Mi Video con Powtoon

Artículos Populares